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ABSTRACT 

An improved mathematical model for the inert gas release from porous solids is proposed. 
The idea of the recoil atoms’ escape via migration along their recoil path and via diffusion in 
a quasi-continuum, simulating the highly defective solid, has been introduced in this model. 
The improved model takes into account the mechanism of the inert gas diffusion in the solid 
matrix which is significant at temperatures above 0.3-0.5 times the absolute melting tempera- 
ture of the respective solid. The expressions derived describe the behaviour of the inert gas 
release from porous solids during a non-isothermal treatment. 

Computer simulations of the improved model justified the application of the model in the 
description of the thermal behaviour of porous solids. 

The dependence of the ETA curves on porosity (i.e., the number of pores and their radii), 
diffusion coefficient, constants of the sintering kinetics, as well as on the heating rate are 
shown graphically. 

A comparison of the theoretical and experimental ETA curves of silica gel, obtained under 
linear heating rate, is given. 

INTRODUCTION 

Emanation thermal analysis (ETA) is based [1,2] on the measurement of 
the release rate of a radioactive inert gas from a solid previously labelled by 
the same gas or by some of its radioactive parent nuclides. The release of 
inert gas atoms, born by the decay of an incorporated parent nuclide, from a 
porous solid, proceeds by several distinct mechanisms: (i) the recoil of the 
inert gas atoms from the surface layer of the parent nuclide; (ii) the injection 

* For Part I see ref. 3. 
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of the inert gas by recoil into the hollow of the pores, followed by rapid 
diffusion; (iii) the migration of the recoil atoms, trapped by the pore wall 
either in a mobile position or in a defect, to the inner pore surface, followed 
by rapid diffusion through the pore; (iv) the inert gas diffusion in the solid 
matrix, contributing significantly at elevated temperatures, i.e., in most 
cases, at temperatures higher than one third of the solid’s melting point. 
Each of the above mechanisms contributes to the total value of the emana- 
tion rate [l] of the porous solid. 

The mathematical model of the inert gas release kinetics, suggested in Part 
I of this series [3], neglected, for the sake of simplicity, mechanism (iv) and 
also partly ignored process (iii). This resulted, however, in impairing the 
universal applicability of the model. Therefore, the original model was 
improved to take into account, in rather good approximation, mechanisms 
(i)-(iv). 

Extensive simulations were made in the whole range of the sensible values 
of empirical constants, using the ICL 7-42 computer of the University 
Computer Center in Prague. Representative examples of these simulations 
are presented in this paper. 

THEORY 

The original form of the model 

As shown previously [3], the emanation rate of a porous body E(T) can be 
described by the equation 

E(T) = eR + cp + es (1) 

where the increments on the right-hand side correspond to surface recoil, 
pore diffusion and the diffusion in the solid, respectively; from these, es had 
been neglected 

‘TT P’R,h,c,( R, + :P,) 
cR=F PR (2) 

for the homogeneous distribution of the parent nuclide, and 

N vr3j2r3 
P 

cp = 
I 

‘Oexp -~(AAT+x,.LJ] E (n+i)[b,,(T)+c,(T)] 
[ 

(3) 
n=O 

Here, T is the absolute temperature, K the linear heating rate, R, the radius 
of the spherical body, Np the number of its pores having the initial radius ri,,, 
and the length 1, cT the concentration of the parent nuclide (e.g., 228Th), h 
and A, the decay constants of the inert gas ( 220Rn) and the parent nuclide, 
respectively, pr and p R the recoil range of the inert gas and the intermediate 
nuclide atoms ( 224Ra) respectively. The meaning of the remaining symbols , 
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is as follows 

(5) 

where 

1 x /-‘1’2 

and 

The integrals are 

(6b) 

and 

J+ = j’exp( -E,/Rx)dx 
To 

The inert gas creation function l(T) for the pore diffusion, which appears in 
eqns. (4) and (5), had the original form 

(1-~)-jl-I-~[l-~ln(l-y)]) 
r I- 

x [l -p. exd - WRT)] 
1 

(9) 

where y = pR/pr, p: denotes the recoil range of the inert gas atoms in the 
pore medium (e.g., air), and po, E, are phenomenological coefficients of the 
migration rate of the recoil atoms trapped by the pore’s wall; K, and E, are 
the constants of the pore sintering kinetics. 

The expression (9) reflects the assumption that, at a sufficiently high 
temperature, almost all recoil atoms which had been trapped by the pore 
wall are released immediately into the pore. This rather crude simplification 
leads, according to our computer simulations, to an exponential form of the 
very first part of the theoretical ETA curve, which gives a bad fit with the 
experiments. Therefore, the first improvement of the original model has been 
done by a closer inspection of this problem. 

The modification of the creation function S(T) 

The usual inner medium of the pores is air or some other gas in which the 
range of the recoiled atoms is at least two orders of magnitude longer than 
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their range in the solid. The recoil atoms thus hit the opposite wall at various 
angles and with various energies from 0 to 85 keV, depending on the depth 
from which they are emitted. In agreement with the ion bombardment 
studies (cf. e.g., refs. 4,5), we can, in first approximation, suppose all such 
recoil atoms to be primarily trapped by the wall. Their backward migration 
into the pore, which should be reflected by the function S(T), can probably 
proceed by three different processes (cf. ref. 6): (i) the rapid backward 
migration of the atom along its own trajectory; (ii) the relatively rapid 
diffusion of the atoms along the systematic (e.g., linear) defects already 
present in the material; (iii) the moderately rapid diffusion of the atoms on 
the high-mobility sites (e.g., interstitial positions) of the solid matrix; in 
addition to this we should consider (iv) the slow diffusion process of atoms 
trapped in point defects or other low-mobility sites. The last of these, 
however, can be excluded immediately on our level of approximation and in 
the case of the short-living radioactive atoms and the relatively easy sintering 
of the pores. To avoid unmanageable complications, we propose to neglect 
process (iii) as well in the following mathematical treatment. In other words, 
the atom can escape in the new version of the model either along its own 
original trajectory or along the already present systematic defect if it meets 
one. Both alternatives have the common feature that the escape proceeds via 
a linear defect and that such an escape path can, by a minor rearrangement 
of the surrrounding solid, become a trap (point or cluster defects being the 
sites of much lower mobility than, e.g., interstitial positions [6]). There is, 
however, a serious difference here, that in the first case the escape path is 
destroyed rapidly by the relaxation of the solid matrix whereas, in the 
second one, the dissipation is brought about by a much slower thermal 
rearrangement. 

Escape of an atom via its own trajectoty 
Let 7~( 19, x, to) be the differential probability that in the interval (t,, 

t, + dt) an atom will be emitted from the depth (x, x + dx) in the direction 
(8, 8 + de), its trajectory length in the opposite wall being I,,, = pr - x cos 
8, if the passage through the pore is neglected. Under homogeneous distribu- 
tion of the parent nuclide, the probability is [3] 

The backward migration of the atom must proceed by thermally activated 
random jumps in one dimension of the trajectory. In spite of the fact that we 
are dealing with a single particle here in contrast to the statistical ensemble 
considered in classical diffusion, virtually the same relations must hold for 
the probabilistic density function (quantum effects being neglected) of the 
particle as they do for the concentration in the usual case. We can thus write 
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for the probabilistic density ~(5, t) on the point &(1B.X, 0) and the instant t: 

with the initial condition 

45,to) = 40, x, t,P(x - &) (12) 

where 6(x - I,,,) is the Dirac delta function. O,(T) in eqn. (11) is a function 
analogous to the diffusion coefficient. The familiar Arrhenius form of such a 
function suggested by the thermal activation of the migration jumps must, 
however, be complicated by the change of the energy barrier due to the 
restoration of the solid matrix. We propose to treat this problem in the 
following way. In a mild simplification, the migration path can be pictured 
as a statistical mixture of a population + of the low energy barrier E, and of 
the population (1 - +) of the high energy barrier E,‘. For the change of c$, 
first-order kinetics can be reasonably supposed 

tc=t exp(-E,/RT)+ -- 03) 

If we neglect the penetration through the high energy barrier E,‘, the function 
Be< T) thus takes the form 

D,(T, T,)=p,exp 

where To is the temperature corresponding to the time of the recoil event. 
Transforming eqn. (11) into the temperature-dependent form and introduc- 
ing the variable 

we obtain the solution in the form of a Green’s function, 

(15) 

From this, the part of the creation function due this type of escape is 

X exp [ -+u)]du (16) 
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where r, (T is analogous to expression (14a) with the integration from CJ to T. 
The integral in eqn. (16) cannot be expressed in a closed form; for numerical 
integration, the interval from T - 4~t,,~ to T (t,,, being the half-time of the 
gas) has been found to be quite appropriate to give sufficient precision. 

Escape of an atom via diffusion 
In accordance with the previous considerations, there is some probability 

that, in a highly defective material, the recoil atom can finally enter some 
continuous defect which will allow its rapid migration to the pore wall; such 
a probability is given by a factor e, which is proportional or equal to the 
volume fraction of such defects in the vicinity of the pore. As such defects 
can be of different length and aligned in various directions, an approxima- 
tive description of the diffusive medium as a quasi-continuum seems to be 
justified. The appropriate equation for the recoil atoms concentration 

where Dd is the mean diffusion coefficient of the quasi-continuum. Dd 
has to be dependent on E and on temperature, i.e. 

D,(T)=d,eexp(-E,,/RT) 

is then 

(17) 

clearly 

(18) 

where d, is an appropriate constant and Edd is the mean activation energy of 
the diffusion jumps. Assuming, again, the first order kinetics for the dissipa- 
tion of the continuous defects, eqn. (18) gives 

D,(T)'= ddEO exp 
] 

- EJRT - : JTexp( - E,,JRa)da 
7;) I 

(19) 

where pdr E,, are the constants of the kinetics of the defects’ dissipation. 
Returning now to eqn. (17) and taking the boundary conditions 

ac(0, r)/at = 0, c( t, 0) = 0 and ac( t, p,)/ar = 0, we obtain the solution 

where 

J 

.V 
7 J . .v = QJx)dx 

0 
(21) 
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and 

where a = irp( X/D,,o)‘/2 and b = i(rp + p,)( X/D,,o)‘/2 and 1,, K, are the 
modified Bessel (i.e., McDonald) functions of the first and the second kind, 

respectively. 
From this, the part of the creation function due to diffusion is 

In the case of the homogeneous distribution of the parent isotope, S, is 
simply Arcr. 

Taking into account both assumed mechanisms of the escape of recoil 
atoms into the pore, the new creation function l(T) for eqn. (3) is 

S(T) = (1 - 4S,(T) +L(T) (24) 

where c,(T) and ld( T) are defined in eqns. (16) and (23) respectively. Using 
these expressions, we assume implicitly the irreversibility of the recoil atoms’ 
escape. This approximation should be justified by the extremely low proba- 
bility of the new penetration of the escaped atoms through the potential 
barrier of the wall and by their much easier mobility through the pore. The 
order of this approximation is, in fact, the same as that which is implied by 
setting the concentration of the gas to zero at the outer end of the pore. 

Emanation rate due to inert gas diffusion in the solid matrix 

The diffusion of the inert gas in the solid matrix and through the outer 
surface of the body was neglected by our original model [3]. The comparison 
of the simulated ETA curves with the experimental ones showed, however, a 
rather serious discrepancy at higher temperatures. Therefore, we include it 
into the modified version of the model. 

In this case, the diffusion of the inert gas in a solid spherical body is 
described by the following equation 

(25) 
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Equation (25) is, of course, a slight idealisation in the implicit assumption 
of the spherical symmetry. As the distortion of the symmetry by the 
influence of the pores is rather slight at temperatures at which the gas 
diffusion in the solid matrix contributes significantly to the total emanation 
rate, it is neglected in this version of the model. In this case, the radial 
distribution function of the intermediate nuclide (assuming the constant 
distribution of the parent nuclide cr( r) and the radioactive equilibrium, i.e., 
the steady state) is, in the case of c&r) = cr 

(2W 

and, in the case of c=(r) = cT, r E (R, - A, Rb), and CT(r) = 0, r E (0, 

%,-A) 

f0 ‘E(OJVPR) (26~) 

CR(r) = RTcT A(2Rb - A) 

AR 4w, 
rE (%-P~%J (264 

where A is the thickness of the surface layer containing the parent nuclide. 
Now, under the given assumptions, the creation function of the gas q,(r) in 
eqn. (25) is 

where c,(p) is the appropriate function from the equation set (26a) to (26d) 
and x is either r + pr or R,. With such function, the solution of eqn. (25) is 

c(r, t) = f e-” 
b 

/ 

I exx 
+- 

o %d exp 
- c(Tt - TX) iR$,(s) sin( &,F)cMx] 

R”b 1 b 

(28) 
where 

(29) 

and the diffusion coefficient D,(T) is assumed to be dependent on tempera- 
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ture only, namely 

D,(T) = Q. exd-Es/R0 (30) 

Under the initial steady state and with the approximation (which allows the 
continuous description of the process for the whole sphere and which is quite 
good for the relevant outer region) 

&) = *TcT [I-pnp( --%)I. 
where p = 10-‘5/p,p,, the initial function +(r) = c( r, 0) is 

with 

VPz,W 

Cl+ Pd.41 - PR4 

(31) 

(324 

and 

\c/2= 
4bPkU 

(1 + Prd2(1 - PFd2 

where w = {x/D,o. 

(3W 

From these expressions, we get for the diffusion part of the emanation 
rate due to the diffusion in the solid matrix 

~~=4~[2&,-%] D,, exp( - E,/RT - AAT/K) 

RESULTS 

(33) 

In the computations presented here, the labelling of the solid sample by 
***Th is supposed, giving rise to the emanation of **‘Rn as follows: 
228Th 2 224~~ 2 220 Rn. The following values of the parameters were used, if 
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not specified otherwise: R, = 10P4 m, pR = 3.95 X lo-’ m, pr = 4.17 X 10m8 
m, rPO = 10e7 m, I= 5 X 10h5 m, Np = 4 x 105, K, = 1013 K s-l, EP = 160 kJ 
mol-‘, K, = 0.01 K s-l, E, = 140 kJ mol-‘, K, = 10n K s-l, Erd = 160 kJ 
mol-‘, D,, = 1.0, Es = 280 kJ mol-‘. In all cases, the emanation rate is in 

units relative to the value Arc-r = 1.0. 

Comparison of different levels of the model 

Figure 1 shows the following comparison of the curves c(T) computed 
with the above listed values of the parameters and using the following levels 
of the model: (i) the original model (curve 1); (ii) the modified model taking 
into account the fractional escape of the recoil atoms through the systematic 
defects of both kinds, q, = 0.1 (curve 2); (iii) model (ii) also taking into 
account the inert gas diffusion in the solid matrix through the outer surface 
of the body. Also given in Fig. 1 is an example of the experimental ETA 
curve obtained when analysing silica gel labelled by 228Th. It is obvious that 
both modifications (ii) and (iii) are needed for the model to correspond 

10 - 

Ex 10s 
s- 

2 I I I I I I I I I I I 

10 

Ex106 
6 

6 

4 

21 I I I I I I I I I I I I 
0 200 400 6m 6m icm 

Ted 
200 400 603 6m 1mo 

TC’CI 

Fig. 1. Comparison of temperature dependence of the emanation rate r(T) under constant 
heating rate K = 0.1 K s-l: (1) theoretical curve corresponding to the original model, with 
r@=lO-’ m, R,=10m4 
mol-‘; 

m, I=5~10-~ m, iVP=4~105, K,=10r3 K s-‘, I$,=160 kJ 
(2) theoretical curve of the model taking into account the escape of recoil atoms via 

continuous defects, with additional parameters K, = 0.01 K s-l, E, = 140 kJ mol-‘, K,, = 10” 
K s-‘, E, = 160 kJ mol-‘; (3) theoretical curve of the fully improved model also taking into 
account the gas diffusion in the solid matrix, with additional parameters D, = 107, Es = 280 
kJ mol-‘; (4) the experimental ETA curve of silica gel labelled by 228Th under the same 
conditions. 
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sufficiently with experimental reality, though the inclusion of the diffusion in 
the solid only affects the later part of the computed curve. 

The effect of the radius r,,,, of the pores 

Figure 2 shows the E(T) curves computed from the fully modified model 
for the pore radii rPO = 2 X lo-‘, 1 X 10P6, 5 X 1O-6 and 2.5 X lo-’ m (the 
last of which is somewhat unrealistic and is included for illustration only). It 
can be seen that the growth of the initial pore radius affects the ETA curve 
in the low-temperature range. The initial values of e(T) increase whereas the 
slope of the curve tends to fall with increasing rPO. The differences in the 
decrease of the curve in the range 800 to 900 “C as shown in Fig. 2 may be 
an artifact of the supposed kinetics of the pore sintering, -which remains to 
be clarified by special experiments. 

The effect of the heating rate 

Figure 3 shows the curves computed from our modified model for the 
following values of the linear heating rate K = 0.05, 0.20, 0.80 and 3.20 K 
S -l. As can be seen, the pseudolinear part of the curve tends to an 
exponential form and, by higher heating rates, new maxima can be formed 
on the curve. This fact has to be taken into account in the interpretation of 
ETA experimental curves: not every irregularity indicates some distinct 

6 x 106 
10 

6 

2 I I I I I 

0 200 400 600 800 1mo 1200 
TC%l 

Fig. 2. The effect of the pore radius on the temperature dependence of the emanation rate 
r(T); for other parameters see Fig. 1. 



388 

Ex 106 
10 

6 

6 

4 

0 200 400 6ol 800 
‘Ooo TfCl ’ 

Fig. 3. The effect of the heating rate K on the temperature dependence of the emanation rate 
z(T); for other parameters see Fig. 1. 

physical process. Additionally, the increase of the heating rate clearly leads 
to the displacement of the maximum as well as of the minimum of the curve 
to higher temperatures. As previously shown [7] in a very simplified quasi- 

22 
0 MO LOO 600 ml 1003 1200 

T C-Cl 

Fig. 4. The effect of the activation energy Ep of the pore sintering on the temperature 
dependence of the emanation rate c(T); for other parameters see Fig. 1. 



isothermal model, this feature can be used for the estimation of the activa- 

tion energy of the sintering of the pores. 
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The effect of the activation energy E, of the pore sintering 

In Figure 4 the dependence of the form of the ETA curve on the value of 
the activation energy of pore sintering EP is illustrated for EP = 160, 200,240 
and 280 kJ mol-‘. The increase in E,, clearly shifts the first maximum of the 
curve to a higher temperature and simultaneously increases the value of e(T) 
at the maximum. The further part of the curve depends, among other factors, 
on the relationship of EP to Es; with the increase of (Es - E,), the first 
minimum of the curve becomes more prominent and could, in some cases, 
even lead to a plateau in the curve. 

The effect of the increase of log KP (K, being the other constant 
characterizing the kinetics of the pore sintering) is qualitatively the same as 
that of EP and has been illustrated elsewhere [7]. This is, once again, an 
example of the “compensation effect” popular in thermal analysis, which is, 
however, brought about simply by the supposed Arrhenius temperature 
dependence of the constant of kinetics and not by some alleged peculiarity 
of the process. 

I I I I I 

0 2ol 400 600 so0 ‘Ooo T L-Cl rzMl 

Fig. 5. The effect of the activation energy Es of the gas diffusion in the solid matrix on the 
emanation rate r(T); for other parameters see Fig. 1. 
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The effect of the activation enera E, of inert gas diffvsion in the solid matrix 

As indicated in the foregoing paragraph, the interplay of the values of E, 

and ES has a pronounced effect on the overall form of the curve. This is 
illustrated by Fig. 5, where E, is fixed at the value 200 kJ mol-’ and 
ES = 200, 220, 240 and 260 kJ mol-‘. The minimum of the curve is clearly 
shifted in both directions. Hence the position of the maximum can serve as 
the criterion of E, whereas from the position of the minimum the value of 
ES - EP can be, in principle at least, evaluated. Owing to the complexity of 
the mathematical model, however, no direct method for such an evaluation 
seems to be available; the only apparent way is the computer optimalization 
of the parameters by curve fitting, which is, unfortunately, a rather tedious 
task. 

The effect of the parameters, characterizing the defectivity of the solid 

The underlying physical idea of the mathematical formulation of the 
function & is the connection between the porosity of the sample (which is 
expressed by the values of NP and rP) and the defectivity of the solid in the 
immediate vicinity of the pores. The probability of such connection can be 
inferred from various possible mechanisms of the pore formation. Two 
different cases should be considered here, however. A point or cluster defect 
as such is, in contrast to the higher-mobility sites, rather a trap for the 
migrating atom [5]; a continuous defect such as a micro- or submicropore or 
a linear defect, on the other hand, can serve as a high-mobility escape path. 
The parameter (Y, which we introduced into the function cd to express 
statistically the fraction of such defects, can actually have a somewhat 
ambiguous meaning. As the mathematical form of I,, under our quasi-con- 
tinuum approximation describes any diffusion in the cylindrical geometry, 
quite another situation can be expressed by a suitable choice of the activa- 
tion energy Edd and the initial value of the defectivity parameter e0 in eqn. 
(19), namely the competition between interstitial diffusion and the slower 
diffusion via defect migration. In this case, however, the higher value of e0 
means a lower defectivity of the solid and the exponential rise of z with 
temperature need not be as general since the usual restoration of the solid 
matrix by higher temperatures can be accompanied by the coalescence of 
small defects into bigger clusters with lower mobility. Such ambiguity of the 
model can be valued both positively and negatively but can be resolved by 
the use of the model in an unambiguous situation-namely, as in this case, 
for the microporous solids. 

The dependence of the ETA curves on the parameters E,, and Edd, 
characterizing the defect state of the solid, is shown in Figs. 6 and 7, 
respectively. In Fig. 6 the effect of Q, is illustrated for c,, = 0.1, 0.2 and 0.3 
and in Fig. 7 the effect of Edd is shown for Edd = 80, 100, 120 and 140 kJ 
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Fig. 6. The effect of the defectivity parameter q, on the temperature dependence of the 
emanation rate E(T); for other parameters see Fig. 1. 

mol-‘. It can be seen that higher E,, values as well as lower Edd values lead to 
higher initial E values as well as to the higher slope of the first part of the 
ETA curve. The form of this part of the ETA curve is, however, affected by 
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Fig. 7. The effect of the activation energy Edd of the diffusional escape of recoil atoms on the 
temperature dependence of the emanation rate r(T); for other parameters see Fig. 1. 
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2: 
200 400 600 ml 

loo0 T C’CI 
1200 

Fig. 8. The effect of the activation energy Erd of matrix restoration on the temperature 

dependence of the emanation rate E (r); Edd = 100 kJ mol-‘; for other parameters see Fig. 
1. 

the value of the activation energy of the matrix restoration Erd as well. This 
is illustrated in Fig. 8 where E,, is varied (120, 140, 160 and 180 kJ mol-‘) 
with Edd constant at 100 kJ mol-‘. As it can be seen, the pseudolinearity of 
the first part of the ETA curve is, at least in the present model, brought 
about by the interplay of the increasing mobility of the recoil atoms and of 
the closing of the escape paths. 

CONCLUSIONS 

The mathematical model of inert gas release from a porous solid suggested 
earlier has been improved. The mechanism of inert gas diffusion in the solid 
matrix and of the inert gas release during the annealing of defects under 
non-isothermal conditions has been taken into account in the improved 
model. 

The material constants suggested in the model describe the physical state 
of the solid, especially its defect state, the kinetics of the annealing of defects 
and of the pore sintering. 

The computer simulations of the model have shown sufficient flexibility of 
the model to meet the most important features of the ETA experimental 
curves. The detailed comparison of the theoretical model with the experi- 
mental curves for various porous materials will be given in Part III of this 
series. 
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